Обозначим ромб АВСД. Проведём диагонали АС и ВД. Точка их пересечения О. Рассмотрим треугольник АВО. Проведём в нём высоту ОК на АВ. Тогда по условию ВК=3, АК=12. В прямоугольном треугольнике высота проведённая на гипотенузу делит его на подобные треугольники. Отсюда ВК/ОК=ОК/АК. Или 3/ОК=ОК/12. ОТсюда ОК=6. По теореме Пифагора ВО=корень из(ВК квадрат+ОК квадрат) = корень из(9+36)=3 корня из 5. Отсюда диагональ ВД=2 ВО=6 корней из 5. Из подобия треугольников ВОК и АОК получим АО/АК=ВО/ОК. Или АО/12=(3 корня из 5)/6. Отсюда АО=6 корней из 5. Тогда диагональ АС=2АО=12 корней из 5.